ICES_CH_1955_Comportative...-43

International Council for the Exploration of the Sea.

C. M. 1955

Comparative Fishing Committee

No. 43 7=

Interim Report on the Selection by Trawl Codend Meshes

made of Various Materials

by A. R. Margetts.

The results of investigations into the mesh selection of seine nets compared with that of trawls (published Journal du Conseil, 1954) indicated that, as Jensen had suggested (Rapp. et Proc. Verb., CXXV), the type of material used in making the meshes of a net might be expected to influence its mesh selection. To test whether this was so a series of experiments has been made comparing the selection of cotton and sisal codends used on the full-sized standard commercial sisal trawls fished by the 90 ft. motor trawler PLATESSA . and the 125 ft. steam trawler SIR LANCELOT. In all the experiments the covered codend technique was employedd and hauls were of 2-3 hours duration. The fish on which the comparisons were based were whiting and haddock.

Some of the experiments were more satisfactory than others, but here the results of all of them have been summarised in table form. Fish of lengths less than 20 cm. and greater than 32 cm. were caught, but for convenience have been omitted from the table. The reliability of each experiment which involved a separate voyage can be judged with the aid of the following comments.

Gear .

In experiments A and B the cotton codend used was of heavy twind hraided double and treated with cuprinol to produce netting which, to the touch, was not noticeably much more or less flexible than the double sisal. The runnage of both the cotton and the untreated sisal twines was about 150 yds. per lb.

In experiments C, D, and E, the double sisal was untreated and of runnage 125 yds. per 1b., and in experiment F it was as in A and B. In experiments C to F the single cotton was tanned and of runnage 180 yds. per 1b., and the double cotton was also tanned and of runnage 224 yds. per 1b. Experiments C and D employed the very same codends; experiments C and E employed 'sister' cotton codends, and experiments E and F employed the very same cotton codends.

In all experiments the meshes were measured with a simple wedge-shaped metal gauge of 2mm. thickness. This was pushed into the mesh, in all experiments but E, with a force of about 5 lb. by one of a pair of observers whose measurements were matched. In experiment E another observer made the measurements, using the gauge with less force. To align experiment E with the others, therefore, about 3 mm. should be added to the mesh measurements recorded.

Results.

During the course of experiments A and B both codends seemed to be selecting satisfactorily. The length distribution of whiting available was almost unimodal, and the apparent selection bands were rather above this mode so that most of the fish went into the covers. The cotton codend was, for a few hauls (included in the tabulated total), fished on a trawl made entirely of cotton, but its selection then did not appear to be different from that on the sisal trawl. These two experiments showed the double cotton to have a markedly higher selection than had the double sisal.

In experiments C and D, the codends seemed to be selecting satisfactorily. The sizes of whiting in C were such that the selection band of the sisal codend coincided with the mode of the length distribution. The selection by the single cotton was distinctly higher than that by sisal, and both ogives extended fairly smoothly between 10 % and 95 % points. The selection bands for haddock were both well below the modal length of the unimodal length distribution. The cotton codend showed the upper half of a selection ogive, but the sisal codend showed no selection; this indicates that the selection by the cotton was distinctly higher than that by sisal. The data from experiment D are poor. Two groups of fish were trawled on different grounds but numbers in the apparent selection band were very small indeed. The factor relating the doubtful 50 % point to the size of the cotton mesh was more of the order of magnitude as that of the sizal mesh in earlier experiments.

In experiment E the apparent selection bands were rather below the modal length of the fish available and thus embraced rather small numbers. In all three cases the upper halves of the selection ogives (from 40 % to 100 % retained and involving the larger numbers of fish) were reasonably smooth, but the lower halves, based on small numbers are not reliable. These results indicate there to be little or no difference between the selections of sidal and cotton codends. The proviso about mesh measurement, mentioned above, should be remembered. In the subsequent experiment F it was found that the covers fitted to the cotton codends in E were too tight. This may have affected their fishing.

In experiment F, for many of the hauls the cotton codends did not seem to be fishing satisfactorily. Although the apparent selection bands coincided well with the modes of the length distributions, too many of the fish which might have been expected in the cover were found in the codend; thus the selection ogives were approximately smooth only from the 40 % point upwards. Even when considering only those hauls after adjustment of the too-tight covers, this experiment shows no very marked difference in selection between double sisal and single and double cotton codends, although the selection by the single cotton is apparently rather higher than that by the sisal.

From the whole series of experiments, although exceptions are recorded, the 50 % length: mesh size factor, for whiting in double sizel codends, as found by covered codend technique, is 3.7.

A review of mesh selection experiment results, including the present somewhat controversial data, has been made for the purpose of the ad hoc Advisory Committee to the Permanent Commission; in this the figure of about 4.1 is suggested for the comparable factor for codends made of cotton and hemp.

Experiment	Plat	A cessa Ma	rch 1954		Pla											
Species Codend Mesh mm. Hauls	Whit Double Sisal 73.3 §		ing Double Cotton 70.8 9		Whit: Double Sisal 70.8 7		ing Double Cotton 70.2 S		Whit Double Sisal 72.1 5		ing Single Cotton 72.3 \$		Hadd Double Sisal 72.1 4		ook Single (72. S	Jotton ,3
Length cm.	Codend	Cover	Codend	Cover	Codend	Cover	Codend	Cover	Codend	Cover	Codend	Cover	Codend	Cover	Fodend	Cover
20 1 2 3 4 25 6 7 8 9 30 1 2	26 40 47 59 80 94 83 63 37 16 21 11 8	332 344 235 190 137 64 33 7 2	14 33 36 41 43 64 47 45 29 29 29 29 20 9 7	514 506 392 255 214 144 78 35 13 11 - -	8 12 19 32 47 62 64 66 46 36 19 14 8	313 366 301 240 185 122 65 23 9 6 2	16 28 34 70 78 97 92 113 106 110 132 93 88	324 405 475 391 430 408 294 233 171 109 67 34 11	- 1 3 20 37 44 44 57 39 40 23	1 4 12 14 29 25 43 30 16 11 5 - 1	- 2 10 12 13 25 31 24 31	6 7 13 18 30 26 25 18 15 9	2 1 2 10 36 78 127 153 177 119 83 48		- 1 5 6 28 83 152 221 184 137 104 80	- 1 1 6 19 29 27 18 15 7 4 -
50% lengtl 50% lengtl mesh	ch 25.0 ch: 3.4		27.1 3.8		26.4 3.7		29.2 4.2		26.7 3.7		30.1 4.2		23		24.8 ? 3.4 ?	

Experiment	Sir L Dec.	D ancelot 1954	E ot Sir Lancelot December 1954									Pla	F tessa An	1955						
Species Cedend	Whiting Single Cotton		Double Sisal		Whiting Single Cotton		Double Cotton		Double Sisal		Whiting Single Cotton		Double Cotton		Donble Sisal		Haddock Single Cotton		uble tton	
Mesh mm. Hauls	71.7		65.7		64.3 10		65.5 5		69 5		6 8 5		69 12		69 5		68 5	\$9 I2		
Length cm.	Codend	Cover	Codend	Cover	Codend	Cover	Codend	Cover	Codend	Cover	Codend	Cover	Codend	Cover	Codend	Cover	Codend	Cover	· Code	and Cov
20 1		57 22	10 3	13 2	17 4	24 4	9 3	15 6	4 25	9 44	3 9	4 15 76	3 8 2)	7 29	6	3 13	1 6	23	2	2 8
2 3 4		1	4 12 44	0 13 42	2 14 79	7 22 85	- 5 36	5 10 33	44 58 26	106 112	16 30 15	эс 40 39	21 42 37	48 52 49	25 137 295	52 119 165	51 116	28 56 9€	126 297	13 34 35
25 6	1 5	6 2	138 158	90 67	231 407	160 148	84 147	66 69	38 93	71 90	19 26	45 30	42 72	29 22	319 252	90 24	171 126	72 33	280 161	28 10
7 8 9	5 11	2	216 158 122	49 21 12	445 392 279	107 51 19	178 135 105	$\frac{48}{35}$	180 242 236	98 74 36	79 86 125	50 48 35	128 137 154	23 15 10	108 25 14	4	53 13 14	- -	88 30 17	3 1 -
30 1	12 32	3	94 56	3	227 110	11 2	76 55	8 1	198 196	26 7	127 100	13 3	136 94	5 3	42 52	9-440 8-176	16 26		35 36	Press.
	00 	L.	52		64	~~			198	T	65	<u>ل</u>	93	3	61	, mart	36	¥***	57	
50% length 50% length:	26. ?		24.3		24.6		24.9		26.5		26	26.8		24.8 ?		5.5 2		3.8 21		1.5 ?
mesh	3	•6 ?	5 	3•7	1 7	3.8	1 Mar 1 and 1 Mar 1 and 1 a	3.8	(,	3.8	ţ.	3.9	, 1	3.6 ?	;	3.4		3.5	• 5 3	